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Abstract—. In this paper, a new enhanced particle swarm optimization method with dynamic adaptation is presented. To 
enrich the searching behaviour and to avoid being trapped into local optimum, dynamic adaptive of PSO parameters are incor-
porated into PSO. In this algorithm, inertia weight of each particle is dynamically updated, also personal influence and social 
influence parameters are dynamically adapted during the process. Moreover, a modified velocity updating formula of the parti-
cle is presented, where, a new constriction factor which control the feasibility of the particles is presented. The proposed ap-
proach can be viewed as the global optimization algorithm while the chaotic search CS is employed for the local search. Thus, 
the possibility of exploring a global minimum in problems with many local optima is increased. The proposed method can ob-
tain the global optimal results quickly, due to fast globally converging characteristics of PSO and the effective local search ability 
of CS. The results, provided by the proposed algorithm for benchmark engineering problems, are promising when compared 
with exiting well-known algorithms. Also, our results suggest that our algorithm is better applicable for solving real-world ap-
plication problems. 

 
Index Terms—multiobjective optimization, particle swarm, local search; chaos  

——————————      —————————— 

1 INTRODUCTION                                                                     
In multiple objectives optimization, several conflict-

ing objectives have to be minimized simultaneously. Gen-
erally, no unique solution exists but a set of mathematical-

ly equally good solutions can be identified, by using the con-
cept of Pareto optimality. Many applications of constrained 
optimization can be found in engineering [1–2], economics 
and finance [3], medicine [4-5], management and planning [6], 
etc. There exist many solution strategies to solve the con-
strained optimization problems. One of the basic approaches 
is the weighting method [7], where one single-objective opti-
mization problem is formed by weighting several objective 
functions. Similar problem has the ε-constraint method, intro-
duced in [7].  

Recently, there has been a boom in applying evolution-
ary algorithms to solve multiobjectuve optimization problems 
[8–11]. Evolutionary algorithms (EAs) are stochastic search 
methods that mimic the metaphor of natural biological evolu-
tion and/or the social behavior of species. The development of 
metaheuristic optimization theory has been flourishing. Many 
metaheuristic paradigms such as genetic algorithm [8,12,13], 
simulated annealing [14], tabu search [14,15], and ant colony 
algorithm[16] has become an interesting approach to solve 
many hard problems. Recently particle swarm optimization 
PSO [11,17] have shown their efficacy in solving computation-
ally intensive problems. Animals, especially birds, fishes etc. 
always travel in a group without colliding, each member fol-
lows its group, adjust its position and velocity using the group 
information, because it reduces individual’s effort for search of 
food, shelter etc. Particle swarm optimization is evolutionary 
technique similar to genetic algorithm because both are popu-

lation based and are equally affective. Particle swarm optimi-
zation has better computational efficiency, i.e. it requires less 
memory space and lesser speed of CPU, it has less number of 
parameters to adjust. Genetic algorithm and other similar 
techniques (e.g. simulated annealing), work for discrete design 
variables, whereas particle Swarm optimization work for dis-
crete as well as analogue systems, because it is inherently con-
tinuous, does not need D/A or A/D conversion. Although for 
handling discrete design variables Particle swarm optimiza-
tion needs some modification to be done in particle swarm 
optimization methods. PSO is an evolutionary computation 
technique, developed for optimization of continuous nonline-
ar, constrained and unconstrained, non differentiable multi-
modal functions [18]. PSO is inspired firstly by general 
artificial life, the same as bird flocking, fish schooling and so-
cial interaction behaviour of human and secondly by random 
search methods of evolutionary algorithm [19]. In [20], a dy-
namic multi-swarm particle swarm optimizer (DMS-PSO) was 
proposed whose neighborhood topology is dynamic and ran-
domized. DMS-PSO gives a better performance on multimodal 
problems than some other PSO variants, but the local search 
performance is not satisfactory.  Dynamic pattern are chal-
lenging for PSO, a self-adapting multi-swarm has been de-
rived [21]The multi-swarm with exclusion has been favorably 
compared, on the moving peaks problem, to the hierarchical 
swarm, PSO re-initialization and a state-of-the-art dynamic-
optimization evolutionary algorithm known as self-organizing 
scouts. To deal with discrete events, an algorithm based on 
discrete developed in [22]. This approach solves the overlap-
ping coalition formation problem in multiple virtual organiza-
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tions. Recently, in [23] presented a PSO method demonstrating 
a significant performance improvement over the SPSO, QIP-
SO, UPSO, FIPS, DMSPSO, and CLPSO algorithms. Because 
the proposed method utilizes fuzzy set theory for the adapta-
tion of parameters, it is referred to as the adaptive fuzzy PSO 
(AFPSO).  To enrich the searching behaviour and to avoid be-
ing trapped into local optimum, dynamic adaptive of PSO 
parameters are incorporated into PSO. PSO has very fast con-
verging characteristics at the beginning; however it has slow 
local search ability, so chaotic local search are incorporated to 
explore a large space and the best value of all the particles will 
be taken as the initial starting point for the CS. Thus, the pos-
sibility of exploring a global minimum in problems with more 
local optima is increased. The search will continue until a ter-
mination criterion is satisfied.  

In this paper, a modified adaptive particle swarm opti-
mizer with dynamic adaptation is proposed. To enrich the 
searching behaviour and to avoid being trapped into local op-
timum, dynamic adaptive of PSO parameters are incorporated 
into PSO. Implementation of dynamic adaption of PSO pa-
rameters aim to force the algorithm to converge rapidly. 
Moreover, a modified velocity updating formula of the parti-
cle is presented. The results, provided by the proposed algo-
rithm for benchmark problems, are promising when compared 
with exiting well-known algorithms. Based on the numerical 
simulation, some conclusions are drawn and some points for 
future work is established. 

2. MULTIOBJECTIVE OPTIMIZATION (MO) 
A general optimization (minimization) problem [7] of M ob-
jectives can be mathematically stated as:  

      
( ) ( )
( )

( )
Minimize    ,  1, 2,...,

      1
subject to     0,  1, 2,.., .

= =  


≤ = 

i

j

f x f x i M

g x j J
 

given [ ]1 2, ,..., ,= nx x x x  where n  represents the dimen-
sion of the decision variable space, ( )if xr is the i-th objective 
function, ( )jg x

is the j-th inequality constraint. The MO 
problem then reduces to finding an x such that ( )if x

is op-
timized. Since the notion of an optimum solution in MO is 
different compared to the single objective optimization (SO), 
the concept of Pareto dominance is used for the evaluation of 
the solutions.  
 
Definition 1: (Pareto dominance). A vector 

( )1 2, ,...,= Mu u u u is said to dominate a vector 
( )1 2, ,...,= Mv v v v  (u

r
dominate v

r
denoted by  u vf ), for 

a MO minimization problem, if and only if 
        

{ } { } ( ),..., ,  ,..., :                                          2i i i ii i M u v i i M u v∀ ∈ ≤ ∧∃ ∈ <
 
where M  is the dimension of the objective space. 
 
Definition 2: (Pareto optimality). A solution ,∈u U where U  
is the universe, is said to be Pareto optimal if and only if there 
exists no other solution ∈v U , such that u  is dominated by 
v . Such solutions ur are called nondominted solutions. The 
set of all such nondominted solutions constitutes the Pareto-

Optimal Set. 
 
Definition 2: (Ideal objective vector) : An objective vector min-
imizing each of the objective functions is called an ideal (per-
fect) objective vector. The component 

I
iz of the ideal objective 

vector ∈I Mz R are defined by minimizing each of the objec-
tive functions individually subject to the constraints, that is, by 
solving 

 ( )
. .       1,...,∈ =

iMin f x
s t x S for i M  

From the ideal objective vector we obtain the lower bounds of 

the Pareto optimal set for each objective function. 

3.  THE PARTICLE SWARM OPTIMIZATION  
Particle swarm optimization (PSO) is an evolutionary 

computation algorithm motivated by the simulation of social 
behavior [24-26]. Namely, each agent (individual) utilizes two 
important kinds of information. The first one is their own ex-
perience (Cognitive); that is, they have tried the choices and 
know which state has been better so far, and they know how 
good it was. The second one is other agent’s experiences (so-
cial); that is, they have knowledge of how the other agents 
around them have performed. Namely, they know which 
choices their neighbors have found are most positive so far 
and how positive the best pattern of choices was. In the PSO 
system, each individual makes his decision according to his 
own experiences (Cognitive) and other agent’s experiences 
(social). The system initially has a population of random solu-
tions. Each potential solution, called a particle (agent, indi-
vodual), is given a random velocity and is flown through the 
problem space. The agents have memory and each agent keeps 
track of its previous best position (called the Pbest) and its 
corresponding fitness. There exist a number of  Pbest for the 
respective agents in the swarm and the agent with greatest 
fitness is called the global best (Gbest) of the swarm. Each par-
ticle is treated as a point in a n-dimensional space. The i-th 
particle is represented as Xi = (xi1, xi2, . . . , xin). The best pre-
vious position of the i-th particle (Pbesti ) that gives the best 
fitness value is represented as Pi = (pi1,pi2, . . . , pin). The best 
particle among all the particles in the population is represent-
ed by Pg = (pg1,pg2, . . . , pgn). The velocity, i.e., the rate of the 
position change for particle i is represented as Vi = (vi1, vi2, . . 
. , vin).  

The particles are manipulated according to the following 
equations (the superscripts denote the iteration): 

( ) ( ) ( )1
1 1 2 2    3+ = × + × × − + × × −k k k k

i i i i g iv w v c r p x c r p x

( )1 1                                                    4+ += +k k k
i i ix x v
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Fig. 1: Description of velocity and position updates in 

particle swarm optimization for a two dimensional parameter 
space. 

 

Where 1,2,....,i N= , and N is the size of the popu-
lation; w is the inertia weight; c1 and c2 are two positive con-
stants, called the cognitive and social parameter respectively; 
r1 and r2 are random numbers uniformly distributed with in 
the range [0,1]. Equation (3) is used to determine the i-th parti-

cle's new velocity 1+k
iv , at each iteration, while equation (4) 

provides the new position of the i-th particle 1+k
ix , adding its 

new velocity 1+k
iv , to its current position k

ix . Figure 1 shows 
the Description of velocity and position updates of a particle 
for a two-dimensional parameter space, also the pseudo code 
of the general PSO algorithm is shown in figure 2 . 

 
Randomly initialize positions and velocities of all particles . 
While termination criteria has not satisfied Do{ 
     Set Pbest and Gbest. 
     Calculate particle velocity according to equation (3). 
      Update particle position according to equation (4). 
      Evaluate the objective function value (fitness value). 
} 
satisfactory solution has been found. 

Fig. 2. The pseudo code of the general PSO algorithm . 
 

4. PARAMETERS ADAPTATION  
 

The swarm population size is often between 10 to 40. The 

reason for a lower population size is that it significantly low-

ers the computing time. This is because during initialization, 

all the particles must be in the feasible space. Randomly ini-

tialized particles are not always in the feasible space. So initial-

ization may take a longer time if the population is too large. 

However, for complex cases, a larger population size is pre-

ferred. In PSO, there are not many parameters that need to be 

tuned. Only the following several parameter need to be care 

of: maximum velocity maxV , inertia weight w, acceleration co-

efficient 1C  and 2C .   Previously, Shi and Eberhart [27] intro-

duced constant inertia weight and linear inertia weight vary-

ing usually between 0.8 and 0.4 where it in the first iteration 

0.8 and decreasing during the process of run to be 0.4 in the 

last iteration. On the other hand, Kennedy [28] asserted that 

the sum of the cognitive and social values c1 and c2 should 

approximately equal 4.0. For constriction, Carlisle and Dozier 

[29] have shown that it is advantageous to adjust the cogni-

tive/social ratio to favor cognitive learning (an individualistic 

swarm). They report that values of 2.8 and 1.3 respectively for 

the cognitive and social components yield the best perfor-

mance for the test set they consider.  

4.1. Inertia Weight Parameter 

In this paper we present an improved PSO algorithm, 

which uses the dynamic inertia weight that changes according 

to iterative generation account. We introduce a new modified 

inertia weight parameter such that: 

0.5 1 sin ,   t=1,2,....N
4

  = −     

tw π

 
Where t is the generation number, the modified inertia pa-

rameter and be visualized in figure 3.  
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Fig.3. Modified inertia weight parameter 

4.2. Cognitive and Social Parameter 
 

In this section, we present a new procedure to generate 
cognitive and social parameter. The idea of this technique is as 
follows  

1

2

1.3 1.8(1 )  ,
1.3(1 ) 1.8

= + −
= − +

C
C

γ γ
γ γ

 

 Where 1.4 0.2= −γ δ  and [0,1]∈δ is a random gener-
ated number. Figure 4 gives schematic view of possible sam-
pling region. 
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Fig. 4: Possible sampling region for Cognitive and social pa-

rameters 
   
This procedure produces a chaos pattern as shown in fig-

ure 5. The generating pattern for 50 iteration is shown in fig-
ure 5.  
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Fig. 5 : generating pattern of cognitive and social parameter 

for 50 iteration 
 

5. THE PROPOSED OPTIMIZATION SYSTEM 
In this section, we describe a proposed approach for solv-

ing multiobjective optimization problems.  A population of 
particles was generated randomly independent of each other 
and distributed uniformly, which navigates through the 
search space. PSO is enriched through chaotic constriction 
factor, this enrichment, accelerate the convergence property of 
the proposed optimization tool and retain the feasibility of the 
particles, where it controls the movement velocity of each par-
ticle so as to improve search engine visibility. Then chaotic 
local search is employed as a neighbourhood search engine to 
explore the less crowded area on the Pareto front. The descrip-
tion diagram of the proposed algorithm is shown in figure 6 
and it is described as follows: 

 
Phase I: PSO 
 
Step 1. Initialization: A population of particles with random 

positions and velocities on n-dimensions is initialized 

in the problem space. 
Step 2. Evaluation: The desired optimization fitness function 

( ) ,  1, 2,...,=  if x i M  in n variables is evaluated 
for each particle. 

Step 3. Setting Pbest and Gbest: Set Pbest of each particle equal 
to its current position, and set Gbest equal to the posi-
tion of best initial particle. 

Step 4. Updating the velocity and position: 
• Update the velocity of each particle according to equa-

tion (3). 
    To enrich the searching behavior and to avoid being 
trapped into infeasible region, chaotic dynamics (Chaot-
ic constriction factor χ ) is incorporated into the PSO:  

• Update the position of each particle according to 
1 1 + += +k k k

i i ix x vχ  
To restrict velocity and control it during Evolution 

of particles, some authors [30-31] use a con-
stant/dynamic constriction factor χ , which has a con-
stant value to improve the performance of PSO.  A well-
known logistic equation is employed, where it exhibits 
chaotic dynamics. 

6
1 0(1 ),  10 , 4,  0,1, 2..−
+ = ⋅ − = = =n n nx nχ µ χ χ µ  

Where, n  is the age of the infeasible particle (How long 
it's still unfeasible?)  

      the new position 1+k
ix  depends on velocity 1+k

iv . 
1 1+ += +k k k

i i ix x v  
      Then, 1+k

iv  makes the particle to lose its feasibility, so we 
introduce a new modified factor χ  such that new modified 
position of the particle is computed as:: 

1 1 k k k
i i ix x vχ+ += +  

 Interested readers could refer to Liu [31] for more details. 
Pseudo code of the proposed chaotic constriction factor is 
shown in figure 6. 

 
Procedure make 

( { }{ }, : ( 1,2,... )= = =i i i sizePOPULATION p x v i pop ) 
            Begin 
            1i ←  

              While ( )pop-sizei < do 

                 
6

0 10χ −=  

                 While { },i i ip x v= unfeasible 

                    
1 1 k k k

i i ix x vχ+ += +  
                           Check feasibility 

                          1 (1 ),  n n nxχ µ χ+ = ⋅ −  
                   End  
                 End  
 Fig 6.Pseudo code of Chaotic constriction factor 

 
Step 5. Evaluation: Evaluate the desired optimization fitness 

function in n variables for each particle. 
Step 6. Updating Pbest and Gbest : For each particle, compare 

its current objective value with its Pbest value. If the 
current value is better, then update Pbest with the 
current position and objective value. Determine the 
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best particle of the entire current population with the 
best objective value. If the objective value is better 
than that of Gbest, then update Gbest with the current 
best particle. 

Step 8.  Ranking:  Ranks individuals (particles) according to 
their objective value, and returns a column vector 
containing the corresponding individual fitness value. 

Step 9.  Archive 
( )tA Update : In order to ensure convergence 

to the true Pareto solutions, we concentrated on 
how elitism could be presented in the algorithm. So, 
we propose an archiving-selection strategy (figure 7 
) that guarantees at the same time progress towards 
the Pareto-optimal set and a covering of the whole 
range of the non-dominated solutions. This can be 
done using update function where, it gets the new 
population ( )tP  and the old archive set ( 1)tA − and de-
termines the updated one, namely ( )tA .  

 
 Input: Current  archive A , new solution x  

        If { } |x A x x Do′ ′∃ ∈ 
 

          A A′ ←  
                  Else  

                 { | }D x A x x′ ′= ∈ =  
                  { } \A A x D′ = ∪  
            End 
Output: A′  

 
Fig.7: Pseudo code of the Archive updating  

 
Phase 2: Chaotic Local search 
 

In this section, Chaotic Local search is described, depend-
ing on chaotic equation a new chaotic local search has been 
driven as follows: 

 A well-known logistic equation Id employed for generat-
ing neighborhood solution.  

6
1 0(1 ),  10 , 4,  0,1,2....;n n n nχ µ χ χ χ µ−
+ = ⋅ − = = =

 
Although the above equation is deterministic, it exhibits 

chaotic dynamics. Interested readers could refer to Liu [31] for 
more details. 

 The general procedure can be described by the following 
steps: 

Step 1: Start with each population point

1

2

 
 
 ==
 
 
  

i

n

x
x

x

x
M

, called 

the starting point, and the prescribed step lengths ix∆ in each 

of the coordinate directions u , 1,2,...., .i i n=  Set k = 1. 

Step 2:  Compute ( )Xk kf f=
. Set i = 1, 0Y Xk k= , and 

start the exploratory move as stated in step 3. 

Step 3: The variable ix is perturbed about the current tempo-

rary starting point , 1Yk i −  to obtain the new tempo-
rary base point as 

, , 1

6
1 1

,

(1 ),  10 , 4,  0,1, 2....
k i k i i i

i i i i

Y Y x

n

χ

χ µ χ χ χ µ
−

−
− −

= + ∆

= ⋅ − = = =  
This process of finding the new temporary point is 

continued for 1,2,....until i n=  is perturbed to 

find ,k nY . 

The algorithm maintains a finite-sized archive of non-
dominated solutions which gets iteratively updated in the 
presence of new solutions based on the concept of dominance, 
such that new solutions are only accepted in the archive if they 
are not dominated by any other element in the current archive  

 

Initialization: { }{ }, : ( 1,2,... )t t
i i i sizePOPULATION p x v i pop= = =

 
While (navigation not completed) do 
 
Phase 1: 
Evaluation  

Set ,best bestP G  

Update 
1 1 1( , , , ),  ( , )t t t t t t

i i i best best i i iv x v P G x x vψ x+ + += = for all parti-
cles 
Update archive 
Phase 2: 
For i=1 : size of archive Do { 

Start with each archive point

1

2

 
 
 ==
 
 
  

i

n

x
x

x

x
M

,  

          For j=1 : n Do { 

        1 2[ ( ), ( ),.... ( )]= i i M iF f x f x f x , 0 =i iY x  
        ix is perturbed  , ,= + ∆k i k i i iY Y xχ           End 

                      End  
Fig. 8. The pseudo code of the proposed algorithm 

 

6. COMPUTATIONAL EXPERIMENT 
 

The performance of the proposed algorithm for global op-
timization continuous function is tested on several constrained 
well-known engineering benchmark problems [32-38]. The 
algorithm is coded in MATLAB 8.0 and the simulations are 
run on CPU with a 2.7GHz Core 2 Duo Intel Processor. Table 1 
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list the parameter setting used in this simulation 
 

Population size 
Cognitive parameter 
Social parameter 
Maximum velocity of parti-
cles 
Inertia  weight 
Intial constriction factor 0χ  

100 
Dynamic Cognitive parameter 
Dynamic Social parameter 
Vmax=Xmax-Xmin 
Dynamic  inertia weght 
10e-6 

Table 1.  The algorithm parameters 
 
6.1. Applications  

The proposed approach is applied to some engineering 
problem was chosen from the engineering application.  

 
• A welded beam design 

 
A welded beam design is used by Deb [33], where a 

beam needs to be welded on another beam and must carry a 
certain load F  (Fig. 9). 

 
  

Fig. 9: The welded beam design problem 
 

It is desired to find four design parameters (thickness b, 
width t, length of weld l, and weld thickness h) for which the 
cost function of the beam and the deflection function at the 
open end are minimum. The overhang portion of the beam has 
a length of “14 inch” and “F=6000 Ib “ force is applied at the 
end of the beam. A little thought will reveal that a design for 
minimum deflection at the end (or maximum rigidity of the 
above beam) will make all four design dimensions to take 
large dimensions. Thus, the design solutions for minimum 
cost and maximum rigidity (or minimum-end-deflection) are 
conflicting to each other.  In the following, the mathematical 
formulation of the two-objective optimization problem is pre-
sented as follows: 
 

2
1

2
2

1 2

3 4

 ( ) 1.10471 0.04811 (14 )

 ( ) 2.1952 /
. .

( ) 13600 ( ) 0,        ( ) 30000 ( ) 0
( ) 0,                    ( ) ( ) 6000 0

          , [0.125,5]  , [0.1,10]

(

c

Min f x h l tb l
Min f x t b
s t
g x r x g x x
g x b h g x P x

h b l t
where

s

t t

= + +

=

= − ≥ = − ≥
= − ≥ = − ≥

∈ ∈

′= 2 2 2 2

2 2
2

2 2

3

) ( ) / 0.25( ( ) )    6000 / 2

6000(14 0.5 ) 0.25( ( ) )
           504000 /

2 2 ( /12 0.25( ) )
64746.022(1 .0282346 )c

l l h l hl

l l h l
t b

hl l h t
P t tb

t t t t

t s

′′ ′ ′′ ′+ + + + =

+ + +
′′ = =

+ +

= −  
In the Welded Beam design problem, the non-linear 

constraints can cause difficulties in finding the Pareto front. As 
shown in Fig. 10.  
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Fig. 10: Pareto optimal front of welded beam using our ap-

proach 
• Two-Bar Truss 
 

Figure 11 illustrates the two-bar truss that is to be opti-
mized [34]. This problem was adapted from Kirsch [35]. It is 
comprised of two stationary pinned joints, A and B, where 
each one is connected to one of the two bars in the truss. The 
two bars are pinned where the join one another at joint C, and 
a 100 kN force acts directly downward at that point. The cross-
sectional areas of the two bars are represented as 1x and 2x , 
the cross-sectional areas of trusses AC and BC respectively. 
Finally, y represents the perpendicular distance from the line 
AB that contains the two-pinned base joints to the connection 
of the bars where the force acts (joint C). The two-bar truss is 
shown below. 
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Fig.11: Two-Bar Truss 

 
The problem has been modified into a two-objective problem 
in order to show the non-inferior Pareto set clearly in two di-
mensions. The stresses in AC and BC should not exceed 
“100,000 kPa” and the total volume of material should not 
exceed 0.1 m3. The reason the objective constraints have been 
imposed is that the Pareto set is asymptotic and extends from -
∞ to ∞. As 1x and 2x  go to zero, fvolume goes to zero and 
fstress,AC and fstress,BC go to infinity. As 1x and 2x go to 
infinity, fvolume goes to infinity and fstress,AC and fstress,BC 
go to zero. Hence, in order to generate Pareto optimal solu-
tions in a reasonable range, objective constraints are imposed. 
The problem formulation is shown below. 
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Figure 12 declares the Pareto optimal solution of the 
Two-Bar Truss. Obviously from the results, the proposed algo-
rithm is able to maintain an almost uniform set of non-
dominated solution points along the true Pareto-optimal front. 
• Speed Reducer Design  
 

The well-known Speed Reducer test Problem represents 
the design of a simple gear box such as might be used in a 
light airplane between the engine and propeller to allow each 
to rotate at its most efficient speed (Fig.13). 

 

 
Fig. 13.  A speed reducer 

 
The objective is to minimize the speed reducer weight 

while satisfying a number of constraints imposed by gear and 
shaft design practices. This problem was modeled by Go-
linski[36] as a single-level optimization, and since then many 
others have used it to test a variety of methods. Here, the 
problem has been converted into a two objective optimization 
problem. The mathematical formulation, of the problem is 
now described. There are seven design variables, 

1 2 3 4 5 6 7( , , , , , , )x x x x x x x  , which represent as depicted 
in table 2. 
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Fig. 12: Pareto optimal front of two- truss using our approach 

 

1x  width of the gear face, cm  

2x  teeth module, cm  

3x  number of pinion teeth (Integer) 

4x  shaft 1 length between bearings, cm  

5x  shaft 2 length between bearings, cm  

6x  diameter of shaft 1, cm  

7x  diameter of shaft 2, cm  
Table 2. Design variables 

The first objective 1 ( )⋅f is to find the minimum of a gear 
box volume, (and, hence, its minimum weight). The second 
objective, 2 ( )⋅f , is to minimize the stress in one f the two gear 
shafts. The design is subject to constraints imposed by gear 
and shaft design practices. An upper and lower limit is im-
posed on each of the seven design variables. There are 11 other 
inequality constraints as depicted in table 3. 
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1g  
Upper bound on the bending stress 
of the gear tooth 

2g  
Upper bound on the contact stress 
of the gear tooth 

3 4,g g  
Upper bounds on the transverse 
deflection of shafts 1, 2 

5 7g g−  
dimensional restrictions based on 
space and experience 

8 9,g g   
design requirements on the shafts 
based on experience 

10 11,g g  
Constraints on stress in the gear 
shafts 

Table 3: The problem constraints 
 

The optimization formulation is  

1 volume
2 2 2 2

1 2 3 3 1 6 7
3 3 2 2
6 7 4 6 5 7

2 7
4 2 3

2 3
6

 f =f

      0.7854x (10 / 3 14.933 43.0934) 1.508 ( )

         7.477( ) 0.7854( ),
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+ ×
= =stress
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Min f
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As shown in Figure 14, our proposed approach works well in 
both distribution and spread. Also, it keep track of all the fea-
sible solutions found by iteratively update the archive content 
during the optimization. 
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Fig. 14. Result for the speed reducer design 

6.2. Performance Assessment 

Our proposed algorithm was tested on set of engineering 
applications in engineering. The test suite is a collection of 
different characteristics of Pareto front. Each of the test prob-
lems was run twenty times independently, with different 
seeds, ID metric is used to measure the performance of the 
algorithm.  

 
Performance Metric (ID): Let ∗P  be an ideal solution (in the 
objective space). Let A be an approximate set to the PF, the 
average distance from P* to A is defined as: 

( ) ( )* ,
ID , * =

∑ d P A
A P

A
 

Where ( )* ,d P A ) is the minimum Euclidean distance be-
tween *P  and the points in A.  

Table 4 shows the ideal solution for each problem (Calcu-
lated from the Pareto front for each application). 

Problem Ideal solution  

welded beam design (2.78001,0.004407) 
Two-Bar Truss (0.0040169,1.72146e003) 
Speed Reducer Design  (3.17017e003,0.6930265e003) 

Table 4. Ideal solution  
 
Table 5 shows the comparison between the proposed ap-

proach and five of the most recent evolutionary algorithms 
[39-42] using ID performance metric. In this paper, multiobjec-
tive PSO is enhanced with chaotic local search scheme. The 
performance of our approach was evaluated on four test 
benchmark functions from engineering domain. In Tables 5, 
the best and worst obtained IGD values for all the test prob-
lems are presented with their mean and standard deviation. 
Also, for each problem, we can rank the different methods 
according to the ID values and get table 6 and table 7. It is ob-
vious that the algorithm performances well on most of the test 
problems. As is evident from table 5, table 6, table 7, in all 
problems, global convergence is obtained and the complete 
Pareto optimal frontier is discovered. The primary cause of 
this behavior is local search strategy which enables the algo-
rithm to search less crowded area in the search space. Hence 
an effective integration of chaotic local search and PSO algo-
rithm is the reason for a better performance of the hybrid algo-
rithm. Overall, the proposed hybrid algorithm performs well 
on the test problems used for this study. The inclusion of cha-
otic local search speeds-up the search process and also helps in 
obtaining a fine-grained value for the objective functions. 
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Problem 
The proposed algorithm 

hybrid 
particle 
swarm 

[41] 

Ant Op-
timiza-

tion Sys-
tem [42] 

quantum 
genetic 
algo-
rithm 
[43] 

Rough 
Sets 

Based 
Approach 

[44] 

Mean(ID) 
Smallest 

(ID) 
Largest( ID) Mean(ID) Mean(ID) Mean(ID) Mean(ID) 

welded beam design 13.7812 13.6325 14.1023 13.8823 13.9321 13.8102 13.7923 
Two-Bar Truss 1.9102e4 1.8233e4 1.9821e4 1.9786e4 1.9524e4 1.9203e4 1.9352e4 
Speed Reducer Design  2.7156e2 2.5123e2 2.8130e2 2.7801e2 2.7351e2 2.7542e2 2.7831e2 

Table 5. The mean, standard deviation, the smallest and the largest values of the IGD used for each test problem. 
 
 
 

Problem The proposed 
algorithm 

hybrid 
particle 
swarm 

[41] 

Ant Optimi-
zation Sys-

tem [42] 

quantum ge-
netic algorithm 

[43] 

Rough Sets 
Based Ap-
proach [44] 

welded beam design Rank 1 Rank 4 Rank 5 Rank 3 Rank 2 
Two-Bar Truss Rank 1 Rank 5 Rank 4 Rank 2 Rank 3 
Speed Reducer Design  Rank 1 Rank 4 Rank 2 Rank 3 Rank 5 

Table 6. Ranking of the IGD values. 
 
 

Method Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 
The proposed algorithm 3 0 0 0 0 

hybrid particle swarm [41] 0 0 0 2 1 
Ant Optimization System [43] 0 1 0 1 1 

quantum genetic algorithm [42] 0 1 2 0 0 
Rough Sets Based Approach [44] 0 1 1 0 1 

Table 7. Statistics of Ranking. 
 

6.    CONCLUSION 
In this paper, a hybrid multiobjective algorithm combin-

ing  adaptive PSO and chaotic local search is proposed. To 
enrich the searching behaviour and to avoid being trapped 
into local optimum, dynamic adaptive of PSO parameters are 
incorporated into PSO. In the proposed algorithm, inertia 
weight of each particle is dynamically updated, also personal 
influence and social influence parameters are dynamically 
adapted during the process. Moreover, a modified velocity 
updating formula of the particle is presented, where, a new 
constriction factor which control the feasibility of the particles 
is presented. Chaotic search CS is employed for the local 
search to explore the less crowded area in the Pareto front. The 
results, provided by the proposed algorithm for benchmark 
engineering problems, are promising when compared with 
exiting well-known algorithms.  
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